C

- Control circuit EEx ia IIC
- Lead breakage (LB) monitoring and short-circuit (SC) monitoring
- 1 electronic output, frequency-split
- 1 relay output, frequency-split
- Adjustable output pulse length
- 1 passive electronic output, serially switched
- 1 passive electronic output, error message
230 V AC:
KHA6-IT-Ex1
Successor KFU8-UFC-Ex1.D

Function

Integers or broken reduction ratios can be realized in a total range of $1: 1$ and $9.999 \times 10^{4}: 1$ with the logic control unit. It can be controlled with a sensor per DIN EN 60947-5-6 or NAMUR, a nonrebounding mechanical switch or preferably an electronic switch

Lead breakage and short circuit monitoring

The frequency separated outputs and the serially switched output are cut off when the current in the control circuit is $\mathrm{J}<0.1 \mathrm{~mA}$ (lead breakage monitoring response) or J > 6 mA (short circuit monitoring response); the fault signal output is switched and indicates a fault through the illumination of LED 3 (red). In addition, the microprocessor is reset.

Connection

Composition

Supply

Connection

Rated voltage
Power consumption
Input
Connection
Rated values
Open circuit voltage/Short-circuit current
Switching point/Switching hysteresis
Pulse/Pause ratio
Lead monitoring

Output

Connection

Output I
Output I and II
Signal level

Output II
Output III
Output III and IV
Pulse length
Output IV
Contact loading
Mechanical life
Energised/De-energised delay
Transfer characteristics
Redundancy
Output I
Output II

Electrical isolation

Input/Output
Input/power supply
Output/power supply
Output/Output
Directive conformity
Electromagnetic compatibility

Directive 89/336/EC

Conformity

Insulation coordination
Electrical isolation
Input
Ambient conditions
Ambient temperature

Mechanical specifications

Protection degree
Mass
Dimensions
Data for application in conjunction with hazardous areas

EC-Type Examination Certificate Group, category, type of protection Voltage $\quad U_{0}$ Current I_{0} Power P_{0}
Supply
Safety maximum voltage U_{m}
terminals 17, 18
85 ... 253 V AC , 45 ... 65 Hz
approx. 1,8 W
terminals 1+, 2+, 3-
acc. to ENnbsp;60947-5-6 (NAMUR), see system description for electrical data
approx. 8 V DC / approx. 8 mA
$1,2 \ldots 2,1 \mathrm{~mA} /$ approx. $0,2 \mathrm{~mA}$
$\geq 0,1 \mathrm{~ms} / \geq 0,1 \mathrm{~ms}$
breakage $\mathrm{I}=0,05 \ldots 0,15 \mathrm{~mA}$, short-circuit 6,2 $\ldots .7,4 \mathrm{~mA}$
output I: terminals 7+, 8- ; output II: terminals 9+, 13- ; output III: terminals 14+, 15- ; output IV: terminals 10,
11, 12
fault signal ; electronic output, passive

1-signal: (L+) -2.5 V (100 mA, short-circuit proof)
0 -signal: blocked output (off-state current $\leq 10 \mu \mathrm{~A}$)
serial switching ; electronic output, passive
signal ; electronic output, passive
adjustable 0,05 ... 500 ms
signal ; Relay
250 V AC / 2 A / cos $\varphi \geq 0,7$; 40 V DC / 2 A resistive load
5×10^{7} switching cycles
approx. 20 ms / approx. 20 ms
$\leq 5 \mathrm{kHz}$
$\leq 10 \mathrm{~Hz}$
safe electrical isolation acc. to EN 50020
safe electrical isolation acc. to EN 50020
according to EN 50178, rated insulation voltage 253 V AC
according to EN 50178, rated insulation voltage 253 V AC
on request

EN 50178
EN 50178
EN 60947-5-6 (NAMUR), see system description for electrical data
$25 \ldots 6{ }^{\circ} \mathrm{C}(248 \ldots 338 \mathrm{~K})$

IP20
approx. 275 g
$40 \times 93 \times 115 \mathrm{~mm}(1.6 \times 3.7 \times 4.5 \mathrm{in})$

PTB No. Ex-89.C.2145, for additional certificates refer to the approval list [EEx ia] IIC resp. [EEx ia] IIB
12,7 V
17,3 mA
55 mW

40 V DC (Attention! The rated voltage can be lower.)
IIB IIC
$1,1 \mu \mathrm{~F} \quad 0,45 \mu \mathrm{~F}$
$5 \mathrm{mH} \quad 2 \mathrm{mH}$

IB IIC
$5 \mu \mathrm{~F} \quad 1,2 \mu \mathrm{~F}$

External inductance	$410 \mathrm{mH} \quad 114 \mathrm{mH}$
Outputs	
Safety maximum voltage U_{m}	40 V DC (Attention! The rated voltage can be lower.)
Electrical isolation	
Input/Output	safe electrical isolation acc. to EN 50020
Input/power supply	safe electrical isolation acc. to EN 50020
Directive conformity	
Directive 94/9 EC	on request
Safety parameter	
CSA control drawing	LR 36087-8

Supplementary information

EC-Type Examination Certificate, Statement of Conformity, Declaration of Conformity and instructions have to be observed. For information see www.pepperl-fuchs.com.

Notes

Divider ratio adjustment

By means of the thumbwheel switch S1 ... S4 any speed reducing ratio between $1: 1$ and 9,999:1 can be adjusted.
By means of the thumbwheel switch S5 the exponent for the basis 10 is set, i.e. the figure that is set by means of S 1 to S 4 is multiplied by $1,10,100,1000$ or 10000 depending on the figure that is set at S5.
Example:
For a volumetric counter the following data are given: Desired indication in m^{3}

- 1 rotation corresp. 2.145 I
- 1 rotation corresp. 1 pulse
- $1 \mathrm{~m}^{3}$ corresp. $=466.2$ pulses

The reduction ratio is 466.2 : 1

Adjustment of the jumpers LB1 and LB10:

After removal of the cover and of the left side part the jumpers are visible on the printed circuit board.

Adjustment of the pulse length

The pulse length can be set by means of the multi position switch S6 (rough) and the potentiometer (fine) at the front of the housing. By changing the soldering of the jumper 1 the frequency separated outputs are inverted.

Delivery: Solder bridge LB1 in position I
Solder bridge LB1 open

Multi position switch S6 Position	Potentiometer t	
	Left-hand stop	Right-hand stop
I	$\geq 50 \mu \mathrm{~s}$	$\leq 500 \mu \mathrm{~s}$
II	$\geq 500 \mu \mathrm{~s}$	$\leq 5 \mathrm{~ms}$
III	$\geq 5 \mathrm{~ms}$	$\leq 50 \mathrm{~ms}$
IV	$\geq 50 \mathrm{~ms}$	$\leq 500 \mathrm{~ms}$

